Introduction of Product

Introduction of Large Hydraulic Excavator PC2000-8

Yoshimasa Ohbora
Kenzou Kimoto
Takashi Kawakami

Further refining the “Dantotsu” keywords “Environment,” “Safety” and “IT,” the new PC-2000-8 has been developed with achievement of “economy” as well as the “Dantotsu” features. The background to development and technology incorporated in the new product are described.

Key Words: PC2000-8, hydraulic excavator, US EPA Tier-2 exhausted gas regulation, low fuel consumption, low R&M cost, Dantotsu, power container

1. Introduction

Since the PC1600 was introduced into the market in 1988, Komatsu’s large hydraulic excavators have been in active service at mines, quarries and large earth moving sites throughout the world. Quality improvements have been incorporated in them using the experiences gained at these sites, fostering them as stable products.

Nevertheless, their basic performance had not been changed and an enhancement has been necessitated in their product power, which has relatively lowered in the face of changing of models made in competitor machines.

The engine installed in them did not comply with the new exhausted gas regulations of Japan, the United States and Europe and installation of a new engine has been demanded.

Against such a background, a full changing of models has been made and “Dantotsu” quality has been incorporated to drastically upgrade the product capability as outlined below.

2. Aim of Development

The hydraulic excavators of this class are mainly engaged in digging and loading work at mines, quarries and large earth moving sites. In Japan, there was large demand in 2000 and 2001 in connection with the construction works related to the Kansai International Airport.

The number of large hydraulic excavators of this class sold outside of Japan is steadily increasing reflecting the rapid increase in the global demand for resources. This trend is anticipated to continue further.

As dump trucks to be combined, the optimum combination is the HD785 class, which has the largest number of units operating in the world.

“Dantotsu” (Environment, safety and IT) + Economy
(1) Low fuel consumption
(2) Clean engine and low noise
(3) Safety design and comfortable cab
(4) Large monitor display and VHMS (Vehicle Health Monitoring System)
3. Principal Features

3.1 “Economy” - Low fuel consumption

1) Accomplishment means and effects

Through a reduction in hydraulic pressure losses achieved by using new technologies, the PC2000-8 economizes fuel consumption by about 10% in the E0 mode compared with PC1800-6. (Fig. 2, Fig. 3)

(1) Reduction contribution ratio

<table>
<thead>
<tr>
<th>Item</th>
<th>Komatsu PC2000-8</th>
<th>Komatsu PC1800-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work cost ratio</td>
<td>Mode P: 105</td>
<td>Mode E0: 100</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Fuel efficiency cost</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Fig. 2 Means to accomplish low fuel consumption

* Values are ratios (indexes) based on Mode DH of the PC1800-6 as 100.

Work conditions
- Loading of blasted rocks
- 90° swing backhoe loading
- Suitable for 78t dump trucks

2) On-demand power drive system

A mere reduction in hydraulic pressure losses is consumed by the work rate and fuel consumption itself is not reduced. The newly developed engine control system curbs engine output proportional to the reduction in addition by a reduction in hydraulic pressure losses, thereby reducing fuel consumption.

The PC2000-8 uses more than one engine curve in accordance with the operation pattern to use different matching points and accomplishes low fuel consumption. (Fig. 4)

3) Reduction in hydraulic pressure losses by swing priority system

The independent swing hydraulic system has been changed to the swing priority hydraulic system and losses are reduced by utilizing swing acceleration relief losses during boom raising and combined operation to boom raising. (Figs. 5 and 6)

Fig. 4 Matching of PC2000-8

Fig. 5 Swing system

Fig. 6 Reduction in hydraulic pressure loss by swing priority system
4) Effective utilization of engine output by electronically controlled variable speed fan

The cooling fan rotational speed is optimally controlled in accordance with the temperatures of cooling water and hydraulic oil. When the temperature of hydraulic oil is low, the fan rotational speed is curbed to a low rotational speed, lowering the horsepower to drive the fan and prevent wasteful fuel consumption. (Fig. 7)

3.2 “Environment” - Clean engine and low noise

1) SAA12V140 engine

(1) Tier-2 exhausted gas regulation of US EPA met

The PC2000-8 is installed with an SAA12V140E-3 engine. The engine is the 12V140 engine that has been proven viable through its performance in HD785, D475A and models installed with an electronically controlled high-pressure fuel injection system, to meet the Tier-2 exhausted gas regulation of the US EPA and to enhance fuel consumption, noise reduction and other engine performance. (Fig. 8)

(2) Fewer parts through large equipment size and simple structure

The time required for checking and maintenance servicing is reduced by installing only one engine, by enlarging the hydraulic pump and by simplifying the hydraulic circuits. A drastic reduction in the number of parts has reduced the work-hours required for overhaul servicing, greatly contributing to cost reduction. (Fig. 9)
2) Low noise
Noise reduced by 8dB (A) compared with existing machines through the following means. (Figs. 10 and 11)
(1) Noise source sealed by a power container
(2) Noise absorption braid installed in air intake and exhaust ports
(3) Fan rotational speed electronically controlled
(4) A large hybrid fan installed

![Power container]

<table>
<thead>
<tr>
<th>Item</th>
<th>Komatsu PC2000-8</th>
<th>Komatsu PC1800-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior noise STD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient 15m (No load)</td>
<td>69.4</td>
<td>81.6</td>
</tr>
<tr>
<td>Ambient 15m (Relief)</td>
<td>76.8</td>
<td>82.8</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan diameter</td>
<td>1.450 mm</td>
<td>1.280 mm</td>
</tr>
<tr>
<td>Electronic control</td>
<td>Provided</td>
<td>Not provided</td>
</tr>
<tr>
<td>Power container</td>
<td>Provided</td>
<td>Not provided</td>
</tr>
<tr>
<td>Noise absorption braid</td>
<td>Provided</td>
<td>Not provided</td>
</tr>
</tbody>
</table>

Fig. 11 Exterior noise

Fig. 12 Factors contributing to low noise
Breakdown of noise reduction by 8dB (A) in dB (A)

![Safety features of PC2000]

OPG top guard (Level II) installed as a standard provision (contained in cab)
Slow descending cage for emergency evacuation installed as a standard provision
Step light for descending during the night (also acts as maintenance light during the night)
Emergency stop switches (Engine start lock switches during maintenance servicing)
Anti-slip plate and wide catwalk, handrails on entire deck
Firewall Partition to prevent oil from splashing onto high temperature parts if hydraulic system is damaged
Sliding ladder with balancer for ascending and descending
Reinforced green glass
Glass panes are reinforced green glass that meet the standard under the Industrial Health and Safety Law of Japan. The glass on the right is attached with a glass-shatter resistant film. The front glass is laminated glass for the safety of operator personnel.
Rear monitoring system (option)
Horn-interlocked flashlight
Brightness of HID working light (option) is about 2 times brighter than halogen light
Ultra-wide visibility provided
Excellent downward visibility through front window that expands to bottom of the floor
3.3 “Safety” - Safety design and comfortable cab

1) Safety design

Thorough consideration is given to safety. The global safety design meets the safety standards of Japan, the United States and Europe. (Fig. 13)

The most stringent safety standards in the world are met entirely.

2) Comfortable cab

(1) Large cab special for mining excavators

A high-rigidity cab with a frame structure that integrates the floor has been developed, featuring excellent visibility, quietness and comfortability. The features include a roomy space allowing several adults to enter, an operator seat and space around it providing ample room even for a physically large operator, and an upgraded assistant operator seat with a retractable seat belt installed as a standard provision.

The rear storage compartment contains a first-aid kit box, a fire extinguisher is provided near the entrance and all windows have Roll-up blinds as a standard provision. The control panel contains a large 7” liquid crystal monitor as a standard provision. (Fig. 14)

3.4 “IT” - Large monitor and VHMS

1) Large, easy-to-see-and-use 7” monitor TFT (thin film transistor) liquid crystal monitor

A large, easy-to-see-and-use 7” monitor TFT liquid crystal monitor is installed as a standard provision for safe, correct and smooth operation. A high resolution panel that is not affected by the viewing angle or brightness greatly enhances the visibility. The switches have a simple design and are extremely easy to operate, allowing one-touch operation of a power change or a lift force change. The function switches ensure easy operation of multiple functions. (Fig. 15)
2) Vehicle Health Monitoring System (VHMS) greatly cuts vehicle maintenance cost

VHMS monitors the operation statuses of the vehicle and major components real time and displays temperatures, pressures, rotational speeds and other parameters on the multi-monitor display. Correct maintenance servicing of the vehicle through the multi-monitor display shortens the vehicle maintenance time. This, coupled with a failure diagnosis function through the storage of past data required for field service personnel, shortens the time needed for servicing.

4. Conclusion

Beginning with the change from dual engines to a single engine, new technologies have been incorporated with almost all equipment and components installed in the machine such as PTO (Power Take-Off), cooling system, fuel tank structure, reinforced undercarriage, operator cab for mining operations, power container, hydraulic equipment and electronic control system and bucket. The new model has been developed with a great zeal for completeness so that new changing of models will become unnecessary in the next ten years.

Nearly a quarter of a century has passed since the PC1500-1 was introduced into the market in 1982 as the world’s first construction machinery installed with a micro computer like D555. The capacity of Komatsu’s largest hydraulic excavator PC400 at that time has been increased as much as four times during this period. The development team did its best, but undue strains on the machines had been caused, creating many problems for the users and dealers.

Against this backdrop, the PC-1600-1 was developed with the determination to re-win the confidence of the users and dealers. The machine received a high reputation in mining and other applications. Since then, modification continued until PC-1800-6 without changing the basic specification. Exhausted gas regulations, however, necessitated another change in the basic specification and the PC-2000-8 has been completed as a changing of models to meet the latest regulation requirements.

Introduction of the writers

Yoshimasa Ohbora
Entered Komatsu in 1975.
Currently assigned to the Construction Equipment Technical Center 1, Corporate Development Division.

Kenzou Kimoto
Entered Komatsu in 1967.
Currently assigned to the Construction Equipment Technical Center 1, Corporate Development Division.

Takashi Kawakami
Currently assigned to the Construction Equipment Technical Center 1, Corporate Development Division.

[A few words from the writers]

Accumulated knowledge and experiences have been devoted to the development work for the model and the writers are fairly confident that the best machine has been developed. Modestly accepting market evaluation of the PC2000-8 as a mining excavator, further efforts and improvement will be made in response to market demands.

Introduction of Large Hydraulic Excavator PC2000-8